News Center

Soaking Up Carbon Dioxide and Turning it into Valuable Products

Structural model showing a covalent organic framework (COF)  embedded with a cobalt porphyrin.

Berkeley Lab researchers have incorporated molecules of porphyrin CO2 catalysts into the sponge-like crystals of covalent organic frameworks (COFs) to create a molecular system that not only absorbs CO2, but also selectively reduces it to CO, a primary building block for a wide range of chemical products.

Another Milestone in Hybrid Artificial Photosynthesis

Peidong Yang CJC Bioinorganic Solar to Chemical Text

Berkeley Lab researchers using a bioinorganic hybrid approach to artificial photosynthesis have combined semiconducting nanowires with select microbes to create a system that produces renewable molecular hydrogen and uses it to synthesize carbon dioxide into methane, the primary constituent of natural gas.

A Robot Chemist, at Your Service

Symphony X is an automated molecular synthesizer used at Berkeley Lab. Credit: Ron Zuckermann

Earlier this year, Berkeley Lab’s Molecular Foundry got a new suite of robotic synthesis tools called the Overture and the Symphony X (pictured above), automated chemical synthesizers that assemble custom molecular structures called peptoids. Peptoid nanostructures, pioneered at Berkeley Lab, have molecular shapes similar to biological molecules like proteins, but are made with synthetic building

Making a Good Thing Better: Berkeley Lab Researchers Open a Possible Avenue to Better Electrolyte for Lithium Ion Batteries

X-ray absorption spectra, interpreted using first-principles electronic structure calculations, provide insight into the solvation of the lithium ion in propylene carbonate. (Image courtesy of Rich Saykally, Berkeley)

Berkeley Lab researchers carried out the first X-ray absorption spectroscopy study of a model electrolyte for lithium-ion batteries and may have found a pathway forward to improving LIBs for electric vehicles and large-scale electrical energy storage.

Researchers Map Quantum Vortices Inside Superfluid Helium Nanodroplets

Illustration of analysis of superfluid helium nanodroplets

Researchers have, for the first time, characterized so-called quantum vortices that swirl within tiny droplets of liquid helium, opening new avenues to studying quantum rotation.

Up in Flames: Evidence Confirms Combustion Theory

A graphical representation of the chemistry in the early stages of soot formation. The molecular formation to the right were demonstrated by experiment, while the formation to the left was not. Credit: Dorian Parker, University of Hawaii

Researchers at the Department of Energy’s Lawrence Berkeley National Lab (Berkeley Lab) and the University of Hawaii have uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds.

Shapes of Things to Come: Exotic Shapes for Liquid Drops Have Many Possible Uses

Through a combination of water, oil and nanoparticle surfactants plus an external field, spherical droplets are being transformed into ellipsoids and other unusual shapes that could find many valuable uses.

3D Dynamic Imaging of Soft Materials

Through a combination of transmission electron microscopy (TEM) and a unique graphene liquid cell, Berkeley Lab researchers have recorded the three-dimensional motion of DNA connected to gold nanocrystals, the first reported use of TEM for 3D dynamic imaging of soft materials.

One-Pot to Prep Biomass for Biofuels:

Joint BioEnergy Institute (JBEI) researchers save water and reduce pollution with the first one-pot, wash-free, process for the ionic liquid pretreatment and saccharification of switchgrass, one of the leading biofuel feedstock candidates.

A Path to Better MTV-MOFs:

A team of Berkeley Lab and UC Berkeley researchers have developed a method for accurately predicting the ability of MTV-MOFs (multivariate metal organic frameworks) to scrub carbon dioxide from the exhaust gases of fossil fuel power plants.