News Center

Berkeley Lab Helps Capture Birth of Mineral in Real Time


Researchers from Lawrence Berkeley National Laboratory, the University of California Berkeley, and Pacific Northwest National Laboratory have used a high-powered electron microscope to capture the birth of calcium carbonate crystals. It is a first step, the researchers say, to better understanding how it might be possible to pull excess carbon dioxide from the air and store it in rock where it wouldn’t contribute to global warming.

Peptoid Nanosheets at the Oil/Water Interface

Peptoid nanosheets are among the largest and thinnest free-floating organic crystals ever made, with an area-to-thickness equivalent of a plastic sheet covering a football field. Peptoid nanosheets can be engineered to carry out a wide variety of  functions.

Researchers at Berkeley Lab’s Molecular Foundry have developed peptoid nanosheets that form at the interface between oil and water, opening the door to increased structural complexity and chemical functionality for a broad range of applications.

First Ab Initio Method for Characterizing Hot Carriers Could Hold the Key to Future Solar Cell Efficiencies

A new and better way to study “hot” carriers in semiconductors, a major source of efficiency loss in solar cells, has been developed by scientists at Berkeley Lab. (Photo by Roy Kaltschmidt)

Berkeley Lab researchers have developed the first ab initio method for characterizing the properties of “hot carriers” in semiconductors. This should help clear a major road block to the development of new, more efficient solar cells.

Unexpected Water Explains Surface Chemistry of Nanocrystals

Calculated atomic structure of a 5nm diameter nanocrystal passivated with oleate and hydroxyl ligands. (Image courtesy of Berkeley Lab)

Danylo Zherebetskyy and his colleagues at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) found unexpected traces of water in semiconducting nanocrystals. The water as a source of small ions for the surface of colloidal lead sulfide (PbS) nanoparticles allowed the team to explain just how the surface of these important particles

Probing dopant distribution: Finding by Berkeley Lab Researchers at the Molecular Foundry Opens the Door to Better Doping of Semiconductor Nanocrystals

Berkeley Lab researchers at the Molecular Foundry have shown that when doping a semiconductor to alter its electrical properties, equally important as the amount of dopant is how the dopant is distributed on the surface and throughout the material.

Berkeley Lab Launches Building Energy Performance Research Project at New FLEXLAB Testing Facility

The DOE’s David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy, was on hand in Berkeley April 14 to tour FLEXLAB™, the Facility for Low Energy experiments in Buildings, run by Berkeley Lab’s Environmental Energy Technologies Division. Danielson and Berkeley Lab Director Paul Alivisatos also met with executives from construction firm Webcor. Webcor’s testing in FLEXLAB will allow its engineers to predict and improve the energy performance for a new building constructed for biotech company, Genentech. A building mockup for Genentech will be studied at different building orientations, specific to the actual construction site. As part of his visit to the Lab, Danielson also toured the Molecular Foundry.

Discovery of New Semiconductor Holds Promise for 2D Physics and Electronics

Researchers at Berkeley Lab’s Molecular Foundry have discovered a unique new two-dimensional semiconductor, rhenium disulfide, that behaves electronically as if it were a 2D monolayer even as a 3D bulk material. This not only opens the door to 2D electronic applications with a 3D material, it also makes it possible to study 2D physics with easy-to-make 3D crystals.

Bright Future for Protein Nanoprobes

Berkeley Lab researchers at the Molecular Foundry have discovered surprising new rules for creating ultra-bright light-emitting crystals that are less than 10 nanometers in diameter. These ultra-tiny but ultra-bright nanoprobes should be a big asset for biological imaging, especially deep-tissue optical imaging of neurons in the brain.

SOFS Take to Water


Supramolecular chemistry, aka chemistry beyond the molecule, in which molecules and molecular complexes are held together by non-covalent bonds, is just beginning to come into its own with the emergence of nanotechnology. Now a new player has joined the field – supramolecular organic frameworks (SOFs).

SOFS Take to Water

Berkeley Lab researchers have unveiled the first two-dimensional SOFs – supramolecular organic frameworks – that self-assemble in solution, an important breakthrough that holds implications for sensing and separation technologies, energy sciences, and biomimetics.