News Center

Q&A With Eric Seaborg: Science Writer, Author, and Outdoorsman

In this Q&A, Eric Seaborg shares memories of his father, Glenn Seaborg, and relates his experiences as a science writer, author, and president of the American Discovery Trail Society, which has established a hiking trail spanning the U.S. – from Point Reyes National Seashore in California to Cape Henlopen State Park in Delaware.

The Wild World of Microbe-Made Products – Skis Now Included

Biomanufacturing – harnessing biological processes in cells and microbes to design and manufacture products – is revolutionizing how we make everything from futuristic consumer goods to sustainable fuels to breakthrough medicines. Every biomanufactured product can be traced back to discoveries in the lab, but translating that science into a real-world product can be tricky. Berkeley Lab is helping to move great ideas, like outdoor gear made from algae oil, from conception to commercialization.

Milestone in Advanced Light Source Upgrade Project Will Bring in a New Ring

An upgrade of the Advanced Light Source (ALS), a synchrotron at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), has passed an important milestone that will help to maintain the ALS’ world-leading capabilities. On Dec. 23 the DOE granted approval for a key funding step that will allow the project to start construction on a new inner electron storage ring known as an accumulator ring.

Unique Cancer Drug Discovered With Help From Advanced Light Source Begins Historic Clinical Trial

An investigational cancer drug that targets tumors caused by mutations in the KRAS gene will be evaluated in phase 2 clinical trials, following promising safety and efficacy results in preliminary human studies and excellent results in animal studies. The drug, developed by Amgen and currently referred to as AMG 510, is the first therapy to reach clinical

These Artificial Proteins Have a Firm Grasp on Heavy Metals

A team of scientists led by Berkeley Lab has developed a library of artificial proteins or “peptoids” that effectively “chelate” or bind to lanthanides and actinides, heavy metals that make up the so-called f-block elements at the bottom of the periodic table. The new library offers researchers an automated, high-throughput method for precisely designing new

In Tooth Enamel, Slight Crystal Misorientations Stop Cracks in Their Tracks

Adult teeth can last a lifetime, withstanding enormous chewing pressures applied hundreds of times each day for decades. In a recent study published in Nature Communications, researchers discovered a natural toughening mechanism: small misorientations among the nanocrystal building blocks of human tooth enamel. Enamel is composed of hydroxyapatite, a biomineral that forms long and thin

Tiny Quantum Sensors Watch Materials Transform Under Pressure

A team of scientists led by Berkeley Lab has transformed diamonds’ natural atomic flaws into an ultrasensitive diamond anvil sensor that could open the door to a new generation of smart, designer materials, as well as the synthesis of new chemical compounds, atomically fine-tuned by pressure.

A Peek into the Battery Technology Pipeline

With its deep expertise in materials research, materials design, and energy storage technologies, Berkeley Lab is working on better battery alternatives. Gerbrand Ceder, a battery researcher in the Materials Science Division, details four battery technologies being studied by Berkeley Lab scientists that could make a big difference in the future.

Freeze Frame: Scientists Capture Atomic-Scale Snapshots of Artificial Proteins

Scientists at Berkeley Lab are the first to use cryogenic electron microscopy (cryo-EM) to image atomic changes in artificial proteins known as “peptoids.” Their findings have implications for the synthesis of soft, 2D materials for a wide variety of applications.

When Solids and Liquids Meet: In Nanoscale Detail

To better understand how a liquid interacts with the surface of a solid, Berkeley Lab researchers developed a platform to explore these interactions under real conditions at the nanoscale using a technique that combines infrared light with an atomic-scale probe.