News Center

Freeze Frame: Scientists Capture Atomic-Scale Snapshots of Artificial Proteins

Scientists at Berkeley Lab are the first to use cryogenic electron microscopy (cryo-EM) to image atomic changes in artificial proteins known as “peptoids.” Their findings have implications for the synthesis of soft, 2D materials for a wide variety of applications.

When Solids and Liquids Meet: In Nanoscale Detail

To better understand how a liquid interacts with the surface of a solid, Berkeley Lab researchers developed a platform to explore these interactions under real conditions at the nanoscale using a technique that combines infrared light with an atomic-scale probe.

The Beauty of Imperfections: Linking Atomic Defects to 2D Materials’ Electronic Properties

Scientists at Berkeley Lab have revealed how atomic defects emerge in TMDs (transition metal dichalcogenides), and how those defects shape the 2D material’s electronic properties. Their findings could provide a versatile yet targeted platform for designing 2D materials for quantum information science.

Go With the Flow: Scientists Design Better Batteries for a Renewable Energy Grid

Scientists at Berkeley Lab have designed an affordable ‘flow battery’ membrane that could accelerate renewable energy for the electrical grid.

A Game-Changing Test for Prion, Alzheimer’s, and Parkinson’s Diseases is on the Horizon

A new test agent can easily and efficiently detect the misfolded protein aggregates that cause devastating neurological diseases in blood samples. The technology could lead to early diagnosis of prion, Alzheimer’s, and Parkinson’s diseases for the first time.

World-Leading Microscopes Take Candid Snapshots of Atoms in Their ‘Neighborhoods’

Scientists at Berkeley Lab have demonstrated how a powerful electron microscopy technique can provide direct insight into the performance of any material – from strong metallic glass to flexible semiconducting films – by pinpointing specific atomic “neighborhoods.”

Going Cold: The Future of Electron Microscopy

Berkeley Lab researchers are pushing the boundaries of electron microscopy by exploring the exciting new frontier of cold microscopes.

Living on the Edge: How a 2D Material Got Its Shape

Scientists at Berkeley Lab have gained valuable insight into why 3D transition-metal-oxide nanoparticles can easily grow into 2D nanosheets. Their findings could revolutionize the design of materials with surface-enhanced properties for energy storage and catalysis applications.

Moving Forward on Desalination

A Q&A with scientist Jeff Urban, who explains forward osmosis and how Berkeley Lab is pushing the frontiers of this emerging technology.

New Recipes for Taking Salt Out of Seawater

As populations boom and chronic droughts persist, coastal cities like Carlsbad in Southern California have increasingly turned to ocean desalination to supplement a dwindling fresh water supply. Now Berkeley Lab scientists investigating how to make desalination less expensive have hit on promising design rules for making so-called “thermally responsive” ionic liquids to separate water from salt.