News Center

Taking the Temperature of Deep Geothermal Reservoirs


A lot can happen to water as it rises to the surface from deep underground. It can mix with groundwater, for example. This makes it difficult for scientists to estimate the temperature of a geothermal reservoir, which is an important step as they decide whether a site merits further exploration as a source of clean,

How Beach Microbes Responded to the Deepwater Horizon Oil Spill


In June, 2010, two months after the Deepwater Horizon oil spill, Regina Lamendella collected samples along a hard-hit beach near Grand Isle, Louisiana. She was part of a team of Berkeley Lab researchers that wanted to know how the microbes along the shoreline were responding to the spill. Some microorganisms love to consume hydrocarbons, and

Berkeley Lab Climate Scientist: More Extreme Heat and Drought in Coming Decades


By the end of this century climate change will result in more frequent and more extreme heat, more drought, and fewer extremes in cold weather in the United States. Average high temperatures could climb as much as 10 or more degrees Fahrenheit in some parts of the country. These are some of the projections made by Berkeley Lab climate scientist Michael Wehner and his co-authors on the National Climate Assessment (NCA).

A New Species in the Amazon Rain Forest – Scientists

The Amazon Basin in South America includes the most biodiverse tract of tropical rainforest on the planet, covering 5.5 million square kilometers. Due to the sheer size of  the Amazon rainforest, the area has a strong impact on the climate in the Southern Hemisphere and is a primary driver of global atmospheric circulation. Berkeley Lab researchers joined Energy Department (DOE) officials and scientific collaborators from the United States, Brazil, and Germany, last week in Brazil to open a two-year field study in the Amazon Basin.

Berkeley Lab-led Project Aims to Produce Liquid Transportation Fuel from Methane

How’s this for innovative: A Berkeley Lab-led team hopes to engineer a new enzyme that efficiently converts methane to liquid transportation fuel. “There’s a lot of methane available, and we want to develop a new way to harness it as an energy source for vehicles,” says Christer Jansson, a biochemist who heads the effort.

New Berkeley Lab Subsurface SFA 2.0 Project Explores Uncharted Environmental Frontier of Subsurface Ecogenomics

The key to a better understanding of the carbon cycle, the flow of contaminants, even the sustainable growth of biofuel crops, starts with the ground beneath your feet. A new Berkeley Lab-led project will develop a predictive understanding of how the genomic functions of subsurface microbiomes affect watershed-scale biogeochemical processes.

Berkeley Lab Climate Scientists See Better Climate Models, Warmer Future

Michael Wehner, a climate scientist in Berkeley Lab’s Computational Research Division, and William Collins, head of the Lab’s Climate Sciences Department, were lead authors on the IPCC report’s chapters on long-term climate change projections and climate models, respectively. They are among more than 200 lead authors from more than 30 countries in IPCC’s Working Group I. Their report released today provides a comprehensive assessment of the physical science basis of climate change.

JBEI Technoeconomic Model: The Sequels

JBEI researchers are developing wiki-based technoeconomic models to help accelerate the development of next generation biofuels that are economically competitive with petroleum-based fuels.

Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase

Computer simulations conducted at Berkeley Lab could help scientists make sense of a recently observed and puzzling wrinkle in one of nature’s most important chemical processes. It turns out that calcium carbonate—the ubiquitous compound that is a major component of seashells, limestone, concrete, antacids and myriad other substances—may momentarily exist in liquid form as it crystallizes from solution.

Biological Soil Crust Secrets Uncovered

A team of Berkeley Lab researchers has performed molecular level analysis of desert biological soil crusts – living ground cover formed by microbial communities – to reveal how long-dormant cyanobacteria become activated by rainfall then resume dormancy when the precipitation stops.